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A CURVE FITTING METHOD FOR

SOLVING THE FLUTTER EQUAT IO



CHAPTER 1| -

INTRODUCTION

In the optimization of & complex structure such as an airpléne,
one ofAthe usual design constraints is that of flutter. Flutter is a
hazardous phenomenon,-for whiﬁh the physics is not fully understood,
in which an elastic body in an airstream, e.g. an afrplane wing,
becomes dynamically unstable. The firgt;f]utter investfgation occurred
about 1915, but-an)accurate theory of aircraft structure flutter was
not formulated until 1935. Engineers in the recent past were able to
design flutter free airp]ane§ with. the exisfing established techn%ﬁues,
but these methods without theidigital computer meant long cumbersome
hand calculations. As always time consumption meant money consumption,
and with the age of new computers.automated methods of flutter analysis
were needed. Automated methods have now been applied to the different
methods of flutter ana]ysi;, but these are basically iterative
techniques that could be time consumingrand therefore costly.

It is the objective of the author, not to.extend the theory of
flutter, but to presen£ a flutter velocity extraction technique which
is relatively fast with respect to digital computational time and is
very simple. The flutter analysis presented here is a part of a large
optimization computer brogram that optimizes a simple three bay canti-
levered box beam (Figure 9) for minimum mass.subject to the flutter

velocity constraint. The box beam was used since many airplane wings

resemble a box beam structure. Two examples are presented. Case ] is



the system resulting from what will be defined as the minimum variaEle
barameters (P(1) = PMIN(CI)). Casé 2 is the.system resulting from a

set of variable parameters which are six times the mi ni mum parameters
(P(1) = PMIN(I) x 6). These variable pafaméters (cross sectional areas,
thicknessés, etc.) are listed in Tablé Il of the Appendix.

Before eXpiaining this method of flutter énalysis a better
understanding of the overall problem of flutter should first be
developed. The following chapter contains a discussion of flutter
for a system with singfe degree of freedom followed Ey the broadgr
concept of” flutter for a system with many degrees of freedom. The
formulataon of. the basic flutter equatlon is also presented in this
chapter. The classrcal or established methods of flutter analysis,
recent work in the area of flutter, and the statement of the problem
are given in Chapter tl1. Chapter IV presents the derivatives of the
eigenvalues A with respect to the reduced frequency k, which could
héve been derived direﬁtly from a paper by Rudisill and Bhatia (11),
buf which are given in detail since some of the complexity and under-.
“ stand;ng might be taken from the problem. These derivatives make
pOSSIbIe the computerized flutter technique explalned in Chapter V.

The results and conclusions of this technique are also given at the

end of Chapter V.-



CHAPTER 11

FLUTTER AND THE FORMULATION OF THE FLUTTER EQUATION

As defined in the Introduction, Fiutter is a hazardous phenomenon
in which an elastic body in an airstream becomes dynamically unstable.
The elastic bending of the wing Is such ;hat energy is added to the
structure faster than it can be dissipated. The flutter speed Vf and
the frequency uc are the lowest airspeed and the corresponding circu;ar
frequency of oscillation, respectively, at which a given structure
flying under given atmospheric coﬁditions Qil] exhibit sustained’simple
harmonic oscillations (1, p. 5). Flighpla; vefoéities above the flutter
aifspeed will cause divergent osci]lafions or damage to the structure,
while airspeeds below Vf represent stable condi;ions. The flutter
speed is therefore a conditio& of neutral stabilfty for the_system.

. Theoretical flutter énalysis many times consists of assuming in
advance that all dependent variab]es are porportional to et . where y
is a real frequency and i= (-I)T{Z Combinations of the velocity V and
the frequency w for which this occurs must be found, This double com-
bination thus leads to a complex or déuble eigenvalue problem, with
two characteristic numbers determining the airspeed and the frequency.
The simpler analogous situation is the free vibration of a linear
structure in a vacuum, which is a real or single eigenvalue problem.

In the past, flutter predictions have been made by many different
- methods. Some of the methpds used were analog simulation, scaled

dynamic models in wind tunnels and flight testing of full scale models



by pilots. The last method requires that the airplane be flown at
the predicted flutter velocity. The excitation of the structure at
this speed sometimes causes divergent oscillations which could mean

death to the pilot.

Single Degree of Freedom

The flutter problem discussed in this paper is one for a
structure with maﬁ} degrees of freeddm; therefore, a simple system
will first be explained. Bisplinghoff (2) considers the exampte of
a rigid two dimensional airfoil in Figure 1. The airfoil is hinged
ét its leading edge so that it is glastically restrained from rotating
about ité leading edge due to the torsional spring with a spring con-
stant equal_to(Ku ft-1b/rad. fhe uns tretched posftion of the spring
corresponds to a zero angle of attack a. The equation of motion for

this single degree of freedom system is

lu& +-Kaq = My 2-)
where
'1;‘ = moment of inertia about the leading edge
M_ = aerodynamic moment due to a(t)
a = angle of attack and
Ka = spring constant.

In order to produce flutter for this simple problem, some
unrealistic assumptions must be made. These assumptions are that the

air density p will be very small and the air foil will be heavily



weighted. First solve for the flutter condition by assuming as a
solution for equation (2-1) the following,

o= Ebe‘mt 2-2

where Eb is a constant angular amplitude displacement. Substituting

equation (2-=2) into equation (2-1) yields,

— .2 2 jwt — iwt, _ ' Coe
-la(aol we ) + Ka(aoe ) = Hy. 2-3

wt

Upon dividing equation (2-3) by wpbhmzﬁge' , where b is the reference

semichord, the result is

: la 0, 2 : _
=0 - T e =0, 2
- mpb o
o
where w, = (TEQZ is the natural-frequency of torsional vibration in a
@ 2~ fwt ' . . .
vacuum and my = Hy/ﬁpb W e represents the dimensionless aerodynamic

coefficients. For a thin airfoil with small harmonic motion in two

dimensional flow my_may be written as

m, = Mar+ 1/2(LOL + 1/2) f I/h(Lh) 2-5.

where Ma, La, and Lh are complex funétions of the reduced frequency k.
Therqgégtity is therefore a complex function‘an& can be split into
real and imaginary parts,

1

i w 2
Re(m ) = —=¢ [(=) - 1] 2-6
Y mob :

n

h

Im(m 0. ‘ , 2-
( y) | 7
From equations (2-6) and (2-7) flutter occurs for the value of

the reduced frequency k for which the out-of-phase component of the
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Figure 1. Rigid Two-Dimensional Airfoil Restrained about
its Leading Edge.



aerodynamic moment Im(my), will vanish, provided that the
correspanding in~phase part, Re(my), is of such magnitude that equation
(2-6) yields a pure real flutter féequgncy. The out-of-phase component
_im(my) islthe only damping or instabiiity fdr the airfoil. For Im(my)
less than zero or an my which lags the simple harmonic motion, energy
is removed From_theroscillations, re;uiting in damping of the alrfoil.
If_lm(my) is greater than zero then divergent oscillations result with

energy added to the airfoil.

A System of Many Degrees of Freedom

By the finite element method a comﬁlex ﬁtructure with many
degrees of freedom is described as éﬁ éssembly of structural! elements
connected by discrete or contiﬁuous‘éttachments, and the displacements
at nodes, including angular displacements, are represented as the
actual displacements on the continuous structure. The interaction
forces, including bending moments and torques-betwéen the discrete
- attachments, are represented as discrete joint forces. Figure 2
shogs_how a cantilevered beam would be represented using the finite
elementlmethod. The applied fofces P], PZ' the ?eaction force Pr’ the
applied moments M],‘Mz, and the reaction moment Mr-are replaced by
discrete forces, M], Y], Mz, Y2, M3, Ys, Mh’ Yh’ and nodal disp!acéments
Vi» 8y VZ’.BZ’ Vs 63, vys 85 at nodes (1), (2), and (3).

For the system with many degrees of freedom and therefore many
’ elements the elastic and inertia properties of thesé elements are

determined in matrix form. It is from these properties that the



" Figure 2. Discrete Element Representation of a Cantilevered
Beam. :



matrix equations for static or dynamic equilibrium are derived. The
motion of a discrete and linearly elastic system can be expressed in

the form (11)

M0} + [K1{U} = {P) 2-8
where, ‘
{U} =n x 1 vector representing nodél displacements for the
assembled structure, referred to a global coordinate system,
{01 = d®(ui7dt? = 0 x 1 vector representing nodal accelerations,

[K] = n x n stiffness matrix for the complete structure cor-
responding to displacements {U}, |
{P} = n x 1 vector representing the total applied forcgs at the
nddés, correSpondiné to the nodes by {U}, ana "
n = the number of degrees of freedom for the stfucture.

As with the single degree of freedom system the theoretiéa1 flutter
anaiysié for many degrees of freedom consists of finﬁing combinations
of the airspeed V and the circular frequency of oscillation w for which
the out~of-phase componenf of the imaginary part of the aerodynamic
- moment vanishes, producing simple harmonic motion. Based on the
assumption of simple harmonic motion, the dispfacement vector {U}
énd the acceleration vector'{a} may be expressed in terms of a constant
amplitude vector {UO} as

W3 = Uy et - 2-9
and

{u} = -mzl{Uo} elut
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The applied loads, P(t), may be expressed as

P(t) =.w2pbh

L [Al{u} , 2-11
where p, b, [A], and L are the air density, semichord, air force
matrix, .and span length respectively. Substitution of equations

(2-10) and (2-11) into equation (2-8) yields,

-u? ' “f (] {uy) PR = et L Al 2-12
Equation (2-12) may be wri;ten as
-"wzllr«]{u} + KUY = oZob” L [A){U} 213
Finally equation (2-13) may be written as,
TIK] - AQM] + c[AD] (U} = {0} 'A - 'z-u;

where ¢ = pbé L and A= wz. Here A is referred to as tﬁe eigenvalue of
eguation (2-14). Equation (2%1&) is the fundamental equation of

flutter, |

The stiffness matrix K and the inertia matrix M are functions of
the variable parameters (cross sectional aréas, thicknesses, diameters
squared, etc.). The air forcé matrix A is a cqmplex function of the
‘ reduced_frgquency k, the air density, the mach number, and the semi-
chord b. The reduced frequency k is defined by the relation,

k = bu/V;

where Vf is the flutter velocity. The matrices K and M are symmetric
while matrix A is not,

For a nontrivial sélution of equation (2-14) the flutter
determinant [[K] ~ A(IM] + 'c[A])] must be equal to zerc. The known

quantities of the determinant are matrices K and M which are determined



]

from the variable parameters of the structure and tberqfore the
above determinant yields a polynomial h1l(=w2) with unknown compiex
coefficients whith_are in general functions of the reduced‘frequency
k énd mach number. The theory used for forﬁu]ation of the air force
matrix A for this paper is that of Theodorsen for subsonic incompress~
ible flow. The use of this particuiar theory yieids a poiynomial from
the flutter determinant which is a function of the reduced frequency
k only; - |

Real vaiueéﬂbf the reduced ffequency k ére assumed and the’
corresponding values.of the eigenvélues are computed for which the
flutter determinant fs‘zero. A system with n degrees of ffeedom will
have n distinct cémp1ex Qalues of A corresponding to an assumed value
of the reduced frequency k, if there are no repeated roots. Repeated
roots are seldom encountered in a sfructural éystem. The flutter
velbcity énalysis consists of finding values of the reduced frequency
for which the imaginary part of the ejgenvalues.will équal zerc. “The
flutter velocitf is then compufed from the following relation

Ve = bu/k | 2-15

It is seen from equation (2-15) that although a value of 1/k
may vield a real value for the eigenvalue i, it méy not be the lowest
flutter velocity, since Vf is also a function of the circular frequency
of oscillation w. The semichord b will be a constant. Thus, the
Jowest of the flutter velocities must be found for the system. Inl

practice the lowest flutter velocity is usually found by checking only



the first three to five flutter velocities for increasing values of

1/k. No proof that this is always the case has ever been presented

in the flutter literature, however.

12
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CHAPTER 111

WORK BY OTHERS

Lawrence and Jackson (5) discués)the Fluttér analysis methods
classified as the American épproach, the British approach, and the
Richardson approach. In their paper they have shown the results of
the three methods, compared them, and given their conclusions. It
is the purpose of the author to discuss in this chapter what maf be
considered the classical techniques of flufter analysis and then
briefly summarize the recent state of the art. The American and
British techniques wil} be considered as the classical methods of
- analysis. Therdifferen£ methodé of flutter analysis commonly used
agree in regard to critical fTutter'airspeeds, provided the same basic
data are used, but give different results for the stability decay

rates at other airspeeds,

British Approach

In the United Kingdom the flutter equation is written in the

" form,
W W g o) S, g [K 11 (U0 3-1
. drz a 5 dt a s '
where
(M] = structural and agrodynamic inertia matrix,
{U} = eigenvectors or column matrix of generalized coordinates,
V = airspeed |
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V, = reference airspeed,
Vo=,
L = span length,
t = Vot/L,

]

[Ds] = structural damping matrix,

]

aerodynamic damping matrix,

]

[K.] = aerodynamic stiffness matrix, and
a”
[k,

A solution of the form {U} = {U} @‘t is assumed where‘fg}is a -

structural stiffness matrix.

constant amplitude vector and Aj are the resulting complex eigenvalues

of the form

where u is the exponential growth rate and © is the circular frequency
of 6scillation. The system is stable if u is greater than zero and

the state of flutter occurs whenypy = 0, §er= iw, or the eigenvalue

is purely imaginary. Equation (3-1) holds only for simple harmonic
mation.

- The aerodﬁnamic stiffness matrix Ka; and the aerodynamic damping
matrix Da‘are Functions of the frequency v = w/V, and usually the mach
number. .The structural damping matrix Ds i; frequently set equal to
zero since it is negligible compared with damping matrix Da due to the
aerodynamic forces. Solutions of equation (3-1) are found by
assuming a value of v for the calculation of matrices Da and Ka, ana
then solving for the eigenvalues Aj from equation (3-1). The eigenvalues

in general are not purely imaginary, and in general the computed value



1.0 .
0.8.
Veri Lined—up '
crit ‘Result \
0.63 | = —
0.l
0.2
e 1 2 2 m

. 3
1.2¢ 57/ |

/=
w - .’;

w .
10 crit
0.8
| Lined-up
Result
0.6 /
0 1 > 3 L
v

£y
ko OF

Figure 3. British Method.

: PRECEDING PAGE BLANK NQl'i.:mMm

!

16



17

of ¥ = w/V, where w comes from the imaginary part of the computed

coﬁplex eigenvalue, do not.line up or equal each other. When the‘
computed eigenvalue is pure imaginary (p = 0), then the assumed v

aﬁd the computed v will line up.

In order to find the lined-up values of F'a'graph‘is ﬁ]otted of
uw obtafned from the eigenvalues against. V} and the Interséctions of
each curve with the line w = VW, where v is the assumed value of the
frequency which w;s used originally to.compute matrices Da and Ka’
jive the lined—ub values of frequency w and airspeed V. This method .
is:graphic;lly represented in Figﬁre‘3. The lowest critical velocity
from the lined-up values will be the flutter veiocity,

The main disadvantage ofithis method is that the eigenvalues
for a iargé range of assumed frequency ¥V values must be calculated
before 1ined-up values can Se found. Therefore, the British method
wili in general be time consuming andrcostly for application on the

computer,

American Approach

The American method of analysis, commonly referred to as the
V-g method, is quite different from that of the United Kingdom. The

flutter equation is formulated as follows,

ivip ]l g2 . -
(M - —=- D k] -5 11 @ = o 32
W

where 1/v = V/w. It is seen from equation (3-2) that the structural

damping matrix DS is completely ignored and g, a fictitious structural
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damping is fntroauced. The structural damp}ng will actuaily be
represented by (g/m){Ks] and is supposedly just sufficient to maintain
simple harmonic motion. The solution {U} = {U} e'®T is postulated
leading to an eigenvalue problem to determine the complex eigenvalues.
Once again an assumed value of ¥ which is used For.caléu]ating

.the aerodynamic damping matrix Da and the aeradynamic stiffness matrix
Ka yields in general the éomplex eigeqvalues from equation (3-2). By
separation of the }eai and imaginary parts of the eigenvalue A, g and
@ may be obtaineé.. The corfeSponding-veIocity V is obtained from the_
relation V:= V/w. A negative value of g means that the system is
-dampgd and‘tﬁérefore, stable. The critical flutter airspeed occurs
when g = 0, Figure 4 shows a graphical fepresentation of the

American method. It is seen from Figure 4 that tﬁg solutions for a
particular value of w/V lie én a stréight line through the origin of
the.w—V plane. It is also seen that lined-up values of ¥V play no

part in this nefhod as compared to the British method; Further com-
parison with the British method shows that all computed values of the
frequenﬁy 3?correspond exactly with the assumed values of v. Once
again the American approach calls for an jterative method varyinglc

to find eigenvalues which will yield g = 0. From the American formu-
lation of the flutter equation a plotting process to find zero values
of g would be time consuming and cost]y; but the American approach
does have the advantage of not having to find the lined-up values of

V.
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Recent Work

Richardson's method is basically an extension of flutter theory
to give correct subcritical decay ratés for.a sys£em with many
degrees of freedom and multidimensional compressiblelaerodynamic
forces. Richardson (8) formulates the general mbtion of a syStém

as follows:

T

- ) e 1w = P e - To)_]i‘i-t’-l%l-}- dr_ 33

drz _ () o

where the matrix A{t1) is the indicial aerodynamic matrix, and is
rélated td thg aerodynamic damping matrix Da’ the aerodynamic stiff-
ness matrix'Ka, and the aerodynamic inertfa matrix M!. The indicial
aerodynamic matrix A(t) is approximated by a power séries expansion
whichlwas a main point by Richardson in this approach.

- The solution of equation (3-3) by Richardson results in m
coefficients of the matrices Da and Ka, which represent the unsteady
sﬁate of the growth of lift functions for an airplane travelling at
speed V in air or the coefficien;s resulting from unsteady aerodynamic
forces. The solution of equation (3-3) results in n(m + 1) roots
instead of the usual n #omplex roots corresponding to n degrees of
freedom encountered in the American and British methods. The n
roots représent the usual decayed oscillations and the nm roots are
negative real roots repreSgnting exponential decays. The Richardson
- method, like the British and American methods, gives accurate critical

airspeeds for the same basic data, but below the critical airspeed
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the British and American methods are not as accurate as the Richardson
method for computation of the decay rate. Of the three methods the
American method must be considered the simplest to use for prediction
of the flutter velocity.

Others that have recently worked with flutter are Hassig (3) and
Phoa (7). Hassig apﬁlies a determinant iteration methdd to the British
- method of solution. In his formulation of the flutter equation he -
includes transfer functions for application to hydraulic controls and
automatic controls systems. The method is an iterafive automatic

, : dyquist’s

search procedure for the flutter velocity. Phoa uses Nyquisit's
—teéhnfque for his computerized technique. His approach shows the

applicability to systems which include feedback control systems.

Although automated, the method is also an Iterative procedure.

- Statement of the Problem

Although automated techniques (Hassig,lPhoé) have been applied
to the various methods of flutter calculation, .these methods are
itgrétive procedures that could be time consuming and therefore,
costly; ‘Hassig's de;erminant method, however, must be considered as
a mbre direﬁt method of solﬁtion than the method used by Phoa.

it is the.objective of the éuthor, not to extend the theory of
flutter, but to find a direct method of solution for the flutter
velocity that is fast and'simple, and apply this method.to the
optimization of a cantilevered box beam for minimum mass due to a

flutter velocity constraint,
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Rudisill and Bhatia (11) have derived the second derivatives of .

the flutfer velocity from the basic fiutter equation (2-14}. From
their work and this formulation of the flutter equation (2-14) the
first and second derivatives of the_éigenvalues with respect to the
reduced frequency (dA;/dk, dzl.j/dkz) can easily be derived. With
these derivatives it is the objective of the author to apply a curve
fitting technique fqr which the flutter velocity could be found
directly and Simpl;; Thé'expressions for the first and second
derivatives of the eigéﬁvalues with respect to the reduced freguency
could simply be written down, bﬁt the author believes that some of )
-the understanaing and.difficulfy wouid-be taken from tbe p;oblew.

Therefore, these expressions are derived in the following chapter.
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CHAPTER IV

FIRST AND SECOND DERIVATIVES OF THE EIGENVALUES

In Chapter Il it was seen that tﬁe fundamental flutter equation
was written as, ) :
[IK] = a(IM] + c[A)]{U} = © 2=
For future derivation equation (2-15) will be written as,

HIKD = (M + IADMU =0 | 1

where the notation [A] has replaced c[A] since ¢ = ﬁb&L is a copsfant
coefficient of matrix A. The subscript | indicates there will be n
eigenvalues Aj and n corresponding eigenvectoré Uj for a single solu-
tion of the flutter equation {(4-1) wheré n is the order of matrices
K, M, and A; ]

From equation (4-1) it is seen that [[K] - AJ([M] + [Al)] is
actually a composite matrixrof the stiffness, mass, and air force

matrices. Transposing this matrix yields
(K] = 2 (M) + {aDTT = 10T =2 (0" f N e
Since the stiffness and mass matrices are symmetric,
[KIT = [K] and [MIT = [M].

The resulting eigenvectors from the transposed matrix (4-2) will be

dencted as Vj‘ The flutter equation may now be written as,
[Tk = A (M) + (A1) v} = 0
Transposing this equation gives,

{vj}T{[KI - A (1M + ;A1>1 _ - 4-3
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For a linearly elastic structure such as the box beam, the dis-
placement at a node 6i can be related to the applied forces by the
following rélation,

§; = o Fp teF, + i cinFn 4-14
The coefficients ¢, are khowﬁ as the deflection influence ;oafficients.
In matrix notatioh.equation {4-4) becomes
. {6} = [C]{F} ' -5
Matrix € is known ;5 the matrix of deflection influence coefficients
or iIs many tEmes referred to as thé errall structure flexibility
matrix. |If the inverse of matrix C exists then . the applied forces may

be foUﬁd in térms of the disp}acemeﬁts. In matrix equation form this
becomes
{FY = [c]7 sy W6
If [C]_] exists then [C]-] = [K] is the stiffness matrix. ‘This
relation Is also true for the flutter equatidn (4-1).
Premultiplying equation (4-])'by the flexibility matrix C yields,
(] = A, [el(In] + [A])]{uj} = 0 o 47

In order to get equation (4-7) in a form used for later differentiation

define,

=L = 10 4-8
J J

Multiplying equation (4-7) by\—?j yields,

[:KJ[I] + [e1([M] + [A])]{Uj}‘= 0 k-9
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Rearranging the terms of equation (4~9) yields,

Lel(1M) + (A1) = X D1]14u,) =0 | b0

which will be the form of the flutter equation to be differentiated.
For digital computational purposes this formulation of the flutter
equation was found to be the fastest and the simplest. Thus, the

following equation develops from equation (4-10),

RANICHOEN RS (1T S 411
With reference to equation (4=11) let -_
[Fil= (Ll + D =X 001 k12
From equation {4-12) the flutter equation may be written as
[F,l{u;1 =0 o be13
and
{VJ.} [FJ.] 0 | L-14

Differentiating equation (4-13) with respect to the reduced frequency

k the resulting equation is,

d[F.] d{u,}

B T - X . i - N L
| ————L—dk _{uj} + [,Fj] ——J—dk 0 k-15

Premultiplying equation (4-16) by'{VJ}T yields

diF.] : , d{u.}
T__ i T - -
{VJ.} i {UJ.} + {vj} [Fj] “ETIZJ—_‘ 0 4-16

From equation (4-14) it is seen that the second term of equation {4-16)
vanishes. The result is,

) 7 dlF.1
{vj} -7ﬁ;L* {Uj} =0 4-17
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The flexibility mafrix C and the inertia matrix M are functions
of the variable parameters only and not the reduced frequency k.
The air force matrix A and the eigenvalues_ig'are however functions
of the reduced frequency. Differentiation of equation (4-12} with

respect tothe reduced frequency k will therefore yield

) dlA] _ dx. _ | -
dlF 1/7dk = [e] s -~ 11 4-18

Substituting this .result into equation (4-17), the following

result is obtaiﬁed,

dlal N T T here
{v Yic] {u } - {vj} -;ﬂg [1] {uj} =0 . k19

Solving equation (4-19) for the first derivative of the eigenvalues
o da, :
with respect to the reduced frequency, —Ei s gives

&y el ali} W, ‘
—ai‘-- . L 420
{vj} [ll{uj} |

Since'{VJ}T[I]{Uj} = {VJ}T{UJ}, equation (4-20) may be rewritten as

ey ' [c) d[A] ()
ak =

§-21
{Vj} {Uj}

The expression for the first derivative may further be simplified
by making the associated row vector VJT orthonormal with respect to

the eigenvectors Uj or

7 v T = . - -
{vj} {Uj} ' y b-22
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where'{VE}T is orthonormal, The orthonormaiization wiil be explained
in the following manipulations.

Consider the following equations,

YTIIEN () + (A - T 011 = o 423
and |
LIcI(IM] + [AD) - % [1)MU3 =0 . h-24

where X} and‘i} ate eigenvalues of the respective equations. Post-
multiplying equation (4-23) by'{Ui} and premultiplying equation {4-24)

by'{Vj}T yields,

{vjiT[[cl([m + (A1) .-,'TJ:{:]'}{U;}.; 0 425
LI + (AD) - T 001w ) = 0 4-26

Subtracting equ%tion (4-25 from equati.oln (h-26), | |
W - T 0T, = o b2y

is obtained. From equation (4-27) if_i} andli} are distinct (i # j),

then
{Vj} {Ui} = 0 4-28
If_i} =‘K} then for the nontrivial solution
WU = d 4-29
SR R

where d is a constant. Dividing both sides of equation {(4-29) by d

yields,

{v_j }T{UJ.]‘ = l] l 430
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where V} T is the orthonormal associated row vector of {U.} with
respect to'{Uj}. Using this result and applying it to equation (4-21)

the first derivative of the eigenvalues with respect to the reduced

frequency becomes,

d— .
— = v Y el d{A] U} - 4-31

Second Derivative of the Eigenvalue

) With Respect to the Reduced Frequency

The starting point for the second derivative will be equation

(4-15) which s,

dlF.1 d{u,}
"Tﬁ%' {Uj} + [FJ] "TE?L“ = 0_ 4-15

Differentiating equation (h-fS) with respecf to the reducedtfrequency
k,

d?[F.] dlF 3 datud  dlF.] dtu)) BN,
T2 Wbt g Y~ —a * [F, 1 - =0  A32

dk

is obtained. Premultiplying equation (4-32) by'{V}}T yields,

d* [F 1 d[F ] d{u.} dfF.] d{u.}
o7y i ;7T !
{VJ} dk {U } ‘l' {V } aK ) + {Vj} ak —-a-R-J-—
: 2.
- d"{u.}
+ {V.}T[F.} ——-—1§— = 0 4-33
ok

I't was previously shown from equation (4-14) that

. . T _ -
{vj} [Fj] = 0 | L-14
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It is therefore also true that,
VL YIF] =0 o | k-3
J J
Grouping terms and using equation (4-34), equation (4-33) reduces to

the following,

[F ] ' d[F.] d{U }
{v} ”"_'l“{”}”{"}"‘]:i"—dsf‘““" 4-35
dk

Fj was defined as,.

[F1 = [II(IM] + () - T, 001 412

Differentiating Fj with respect to the reduced frequency k; yie]dé,

dIF.] dx. -
i dfA] _ - ol
dk “[C] dk *3% [1] 4 ?6
and
2 2—
d°[F.] 2 d A, :
= [c] & ”‘% -—+ 01 4-37
dk dk dk® - -

Substituting.d[Fj]/dk and dz[Fj]/dk2 into equation (4-35) yields,

2_

dk - d{u.}
RS TirerdIal - + 001wy + 20 el - iy g
| dk? dk? | 4-38
Soiving'equation {(4-38) for d?X}/dkz, the resulting expression is,
dx, d{u.} 2
- d[A] 7 ] 7 1 Tra14°[A)

dzA- 2{v 1! Lic] dk[l]] = * {vj} [clwzﬁ:m* {uj}

J . 4~

di TR UNIUR
J J

Since the denominator is unity the expression for the second derivative

becomes,
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2= ' , ' :
d°x, dx,  diu} 20,4
—4 = 2Tl - il s Tty s
dk dk '

The only unknown of equation (4-40) is d{Uj}/dk, which may be

written as a linear combination of vectors Uy

d{u,} n

where ajkh is a scalar quantity and Uh are eigenvectors of the n

eigenvectors which form a complete set of vectors in a n vector

space, Substitution of equation (4-41) into equation (4-15) yields,

- d[F 1

{U P+ [F ] Z} a'kh {Uh} =0 : ' 4-42

Premultlp]ying equation (4- 42) by {V ¥ where i £ ] ylelds,

. d[F ] . n’ .
{v H {u b+ {v i [F ] = N {Uh} =0 43
h=1 = |
From equation (4-43)
RUTHCA R UANIC IO E v {3} B =T

is obtained. Postmultiplication by'{Uh} yields,
_.T . —._..T -_. s _
{v.} [Fj]{uh} = (v} [[CI([MJ + {A])_ VAj[I]J{Uh} =45

From the basic flutter equation (4-10) the following relation may be

written,

[le](iM] + [A])]{UJ} = Aj[l]{Uj} 4-46
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Premultiplication by {VE}T of equatién (L-46) yields,
C e LT . Y U
. Ml + U.r={v.} a, li}{u, : b-47.
{VJ} ([cl({M] + [A) L J} '.{-J}' J[ H J},_
but the quantity on the right side of equation (4-47) yields,
RUALAGITEESY
J o J S
from the orthonormality of'{ﬁh}T withrreSpéct to'{Uj}. Thus, it Is

seen that,

-

TUEl(M + D) - T 11003 = 3Tl () + (A1) 14U}

G T ’ .
- {V.} A, . , 4-48
{vj} Almwj}
or,
VIF JU,} =% - % 4-h9
R j
Applying the above relation to equation (4-43j gives
| ; dIF.Y _ |
{v.} -—J-—dk {uj} + ajki(ki - Aj) fo
for h = i, sinﬁe'{V}}T[Fj]{Uh} = G fOr-h # i. Solving for ki yields,
d[F.]
- !
| {Vi} TR {Uj} |
ajki = Y ‘ ‘ 4-50
i ]

where i‘# i. The following relatiéns are shown to give the case
when i = j or £he expression for ajkj' even though these coefficients
will be seen to vanish in later derivations.

It was shown previously in equation (4-30) that'{VB}T{Uj} = 1.
It can also be shown in a similar manner that {Uj} can be normalized

so that
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fu,Yur=a, 4-51
7Y
and: that

‘{Uj}T{Uh} = constant = bjh' | | h-52

Differentiating equation (4-51) with respect to the reduced frequency

k yields,

. d{u 3’ 7 6lu.} ,
{u 1+ {u 3 ““Ei"“ o ‘ 4-53

From equation (4-4]) it was seen that d{U }/dk could be written as

Ilnear combination of vectors {U }, thus the following relation for

d{U ) /dk IS,A
d(u,}’ n . .
= LI 2k .} >t

Substituting equations (4-41) and (4-54) into equation (4-53) yields,

n -
Z a

i th

T _'
A {U } {U } o+ E ajkh {Uj} {Uh} = 0. 4-55

h=1 .
Factoring out the ajkj coefficients from this equation the result is

n

I a, {U } {U.} + E o VLAV Y + 22, =0 h-56
by Zikh 37T py Bake R T T 22y g
h#j ‘ h#j
Since {Uh}T{Uj} = bhj and {UJ}T{Uh} = bjh’ the expression for aikj is,
‘ | e

h#j
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The second derivative of the eigenvalues with respect to the

reduced frequency was expressed as,

. _
dx, dx, d{u }

—} - 20 [{c]dm ait U=+ @ yeCan! 1) AR
dk _ dk

d{u.}
Let us focus attention to the terms containing Tk of equation

(4-ho),

dx, d{U }

d[A]
ko (11

2{V ' {ic]

4-62

Substitution of the expression for the first,derivative of the

eigenvalues with respect to the reduced frequencylinto eduation {4-62)

yields,
dfF,] d{u.} | | d{u,}
27T b L= 27 r{cld“‘] @ Terlal Wl 63
3 dk ]
where {V } fcl A] {U } is a scalar.
Since {V } [C]d[A] {U } is a scalar, equation (4-63) may be written as
d[F.i d{u,} d{u.} 3 d{u.}
P T — A 1" d[AI cq - vt ] a
2{yj} T 2{v yc]ial -:ﬁ;L- URRUR I 11 464

- 1t was shown previously that {ﬁ}}T{uj} = 1 from equation (4-30),.

Taking the transpose of equation {4-30) yields
WA, =1 . i~65
4 J o
It is also, therefore, true that,

. ’ ¥
d{u.} d{u.}’
U0 L A @) b-66

dk dk
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du.} |
With this result —EEi—- may be written as
d{U.} n , _ .
_—Eil_'= hzlajkh {Uh}.+ ajkj {Uj} 4~58
h#]j

or 5ubstltut{ng the expressions for_ajkh and ajkj vields,

T d[F .
d{u.} n {Vh} i {U.}{Uh} . "
—_— = - g J ->(za,, (b .+b, }){U,} 459
dk h=1 T -5 2 =1 jkh ' "hj ih J
e h j . :
h#]j h#
diu, 3" |
In a similar manner T may be written as,
d(f.1 :
v )T W e Tyt e T
_ i -s(Za, (b .+b.))U.} . 460
& =k -7 2 =y JKhTRT TJRTT ]
=] h ] hé i
h#j J

Postmultiplying equation (4-59) by'{Uj}T and premultiplying equation

{(4-60) byf{uj} and subtracting the two equations the result is,

d{u.} | afu )’ W }Tiﬁi—]'{ RCRY
. ‘ U, n- {v u. iy U,
—_l Y - —l— -y kG B 4-61
dk J J dk =1 T . I ‘ .
dlF.]
T Tepy T
n {Vh} WJ_ {U }{U } {Uh]‘
h=1 AL = A
h#j h ]

From equation (4~61) it is seen that the coefficients 45 have

vanished from further manipulations.



. __equation (4~6h) becomes,

35

Substitution of'{Uj}T{VE} for "1" and the expression for {V}}Td{uj}fdk,

- e i e e kR A R

d{y, } d{U }

dlF.] d{v.} ' |
= T _ d[A] _ =
| z{vj} - “&'EJ— 2{v Fepdial { {u 37 {v } {u } {.vj}.}._..- _
4-67
Factoring out'{gg}, equation (4-67) may be written as,
: T
. -d[F.] d{u,} a{u.} d{u.}
z{vJ.}T—a-RA——a-{L z{u } [c]d["] { {u }- {u }-J—}{v.} 4-68
- S T T O d{u.}

Equation (4 61) g:ves the expre55|on for {—-—J—-{U }- {U }———L— .

Substitution of this equation into equation (4-68) ylelds,

o d[F ]
_ Ld[F.] d{u.}- n {7} —d (W, Hy Hy, Y
v,y = 27} [c]d[A] ¢5 =D
i dk dk ak T - -A—
h#j ho 7]
790F.] , T.ooT
noWp Yt .
+ I = HV.} k-69
h=1 A, - X J
h#j S

It was previously shown that'{Vk}T{Ui} =0, where i # j. Thus
V. =0 o ‘  4-70

h J .
where h # j. . Equation (4-70) causes the second term of equation {4-69)

to vanish. The resulting equation is,

dfF.]
_ LdIF.] atu.} n (V. H—1" (v 1y}
24T - 27 [c]d{A] g —hl dk  Tjh b7y
Joodkdk h=l X -X
h#j h J
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From equation (4-18) it can be shown that,‘

_ d[F 1
FIRY

h W = W, —l--{'”“‘“”“T‘“"“’**'ﬁiié"' ”

From the result of equation (4-72}, equation (4-71) may be written - - -

as,
d[A] d[A]
diF.] d{u.} n ({v T epdiAl {u })({v T (e ddAL {u })
AV Ve — I 2 5 g b-73
7 odkdk h=1 K‘ Y
- L] - ' { h
— h#] J

“Substitution of equation {4-73) into equation'(h-ho) yields the
expression for the Second der:vatlve of the e1genva]ue with respect

to the reduced frequency as,

2= : d[A] d{A]
dx, n ({v 1 [el5 = y, DV, el AL ;1)
e @A —
dk dk” : h—l A Ay
- h#j A 4-74

The following chapter explains the author's method of finding the
critical flutter velocity. Without the first and second derivatives

of the eigenvalues with respect to the reduced frequency the method

- -used would be impossible,



CHAPTER V

A COMPUTERIZED CURVE FITTING FLUTTER ANALYSIS

From Chapter IV it was seen that the flutter equation could be

written as,

[l (D + [AD) - %, [01w =0 e

where C, M, and A were defined as the flexibility, ine;tia,_and air
force matrices, respectively. '{Uj} were defined as the eigenvectors
or a column vector of generalizedrcoordinateg. -The.solution of -
equation (4-10) for an assumed.valué oflthe.reduced frequency k'
yielded ] compiex eigenvalues of the form |

, B

i = (-n1/2

where Xj = l-; , and wj represents the imaginary part of

2
W'
the eigenvalde. The values of ¢j are labeled in descending order of
X+ Each j subscript corresponds to a mode of oscillation.
The eigenva]ues_i} are a function of the reduced frequency k,

which is a function of the semichord b, the circular frequency of

oscillation w, and the velocity V by the relation,

= &
v

o

The eigenvalues can then be said to be a function of b/k or Vw. If
the imaginary part of the eigenvalues wj are plotted against uj,
where vj = Vj/%i a set of typical curves might like the curves of
Figures 5 and 6. Figure 7 gives a representation of a set of typical

X; curves. It is seen from Figures 5 and 6 that modes 2, 4, and 6

37
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produce ¢j curves that cross the v axis. At these points where_i}

is pure real or wj is zero; flutter will occur. The lowest velocity

corresponding to a pure real_x} will be the critical flutter velocity
for the system, where the flutter velocity is computed from the

relation,

o120 ' .

From a structural synthesis point of view ii is computationally
inefficient to make plots of wj versus Vj for each flutter analysis.
Instead of using the piptting.procedure, the crossings of wj may be
approximated Py fitting cubic or quadréfi# eduationslto wj from com-
puted values of wj’ dwj/dv, and dzwj)dzﬁ. The first and second.
derivatives of the eigenvalues with respect to the reduced freguency
were derived in Chapter V. In order to use £he curve fitting
téchnique, the first and second derivatives of the e{genvalues wi th
respect to v must be derived.

Let D = b/k, where b Is the reference semichord and k is the

reduced frequency. Then,

...dD = --'35 ko 5-3
k
or,
d(-';—) b
—k o b 0
w2 — s 5
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The first derivative of the eigenvalue with respect to b/k may be -

expressed as,

dX, J"
= ! dk 5.5
d-.'?. dk d.ll
k Kk
where,
dx, :
1o 7 aTrey AL .
m v } [cl i {uj}  4-3]

Since b/k = ¥V/u = v, the expression for the first derivative of the-

eigenvalue with respect to v may be written as,

dx 2
- ook ey Trey dlAL .
- b {vj} fcl K {UJ} 5-6

& Mo d-;j Yy e P dh 57
d(~a dy ak? o dk d(%)z

where dk/d(b/k) = -k2/b and dzk/d(b/k)2 = 2k3/b2. Substitution of the
relations for dX}/dk and d?i}/dkz into equation (5-7) yields,

oy
—_—tb =

2

3
2apiedley
dv b ‘

2
+(k)2{v3r{c]df§]w}
dk

ERAUO I Terdlal ¢ K
+25 —d— ~ 5-8

h=1 X -3
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Curve Fitting Technique

AdThemwj curves are approximated by cubic equations of the form,

' 2 3
. = A.v + B, + L, -
Vi T A i’ i’ 53

The graph of cubic equations (5-9) pass through the origin and the
coefficients Aj; Bj’ and CJ are evaluated such that the curves of

equation (5-9) pass through the points(vo,¢?) and (v, E}). The first

derivative of wj with respect to v is,

' dy, ' 2' o
. wt- Aj+ 2By + 3Cj-v | 5-10

“The cur#e;“s¥ equation (S-Id) pass through the poin; (uo, dw?/dv)
where w? and dw?/du denote va?ues of mj and dwj/dv evaluated at

Vo= v respectively, and E} denoteé ¢j‘evaluated at ;'='v°/M, where
M is some large number, say 10 or 100. A is an assumed trial value
of v,

The coefficients Aj’ Bj’ and Cj are calcuiated from the

foilowing equations,

S 2 3 _
e g = Ay By S oy 5-11
dS/dv = A, + 2B.v_ + 3C.v 2 | 5-12
j j jo jo
.and,
- - -2 -3
. .= A.v + B, + C.v o -
e e s, ¥ ] j J\’ i ] 5-13
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Using Cramer's rule the coefficients of equation (5-9) may be

expressed in the forms,

Aj_='{E}uoh.+ ¢?(2§3v0 - B;Qvoz) +'dw?/du(;2vz - GQZ)}/D 5-14
o fesT 3 4 0,2 L =3 0, T3, LT3 : i

B; = { Zvvy + wj(Bwo v7) + dwj/dv(v Vo T VD) I/D | 5-15

' c; = {'w'jvi + ¢J?('Jz - z‘G‘GQ) + de‘?/du(Cuoz - 'quo) 1/D . 5-16

and,

o= h 203 3 2 . )
D= vvo 2v 'y + y uo _ : , 5 [7

Since wj is zero at v-= 0, then the other two crossings of wj may be
~--found by settfng wj in equation (5‘9) equal to zero, thus |

A, +B.v # C.vl=0 . 5-18
SRS M - o

From the quadratic formula the roots may be expressed as,

o = fen ¥ (a2 _ 12, " g-
v {13j (Bj hAjCj) ,}/2;:J. _ 5-19

provided CJ is not zero and (B? - MAJCJ) js-gféater than or equal to
zero, If v from equation (5-19) is not pure réaland positive then
curve fitting by the use of a quadratic equation of the same form aé
equation (5-18) may prove successful.

The coefficients (Aj’ Bj’ Cj) of the Auadratic equation,

2
.= A, + B.ov+(, =20
IS T M >

are computed for curves which pass throﬁéh Bdints (vo, w?) and o
dy,

have first and second derivatives which pass through points (vo,E;JQ
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and (yo, dzwj/dvz), respectivély, may be found from the Fo]]qwing

equations,

o _ 2 '
wj = Aj + ijo + Cjuo 5-21
i} 5 [ e
dwj/dv "_Bj + zcjuo : and, | - 5-22
dzw?/dvz = ch 5-23

From equations (5:21) through (5-23) the coefficients may be expressed

as, 7 "
20,,62 ' o .

2C, = d7y./d : -2k
Pt ‘ | >
B, = d¢°/dv - 2C.,v - ‘ : : 5-25
j A e

and,
A =40 ~Byv - C.v 2 . - | 5-26

J '} o jo
Substitution of these coefficients into equation (5-19) yields the
roﬁts of equatfon (5-20). " . |
- 1f the roots of a mode are not real and positive, then the curve
fit for that mode fails. If one of the CJ for fhé cubic equation is
zero then the approximate crossing for that mode may be found by using
the New;on-Raphson’s method for findihg the root, provided‘dw?/dv is

".not also zero, then,

1]

A%

It was noted previously that the flutter velocity is computed
from the relation,

-1/2 |
V. = . . -2
F (XJ) \)J 5

. o,..0
Vv, " wj(dwj/dv) _,5f27.“u
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Siﬁce the fluttérrvelocity islcomputéa ffom the predfcted root vj,
then the flutter velocity wil] be correct only if the corresponding
xj,value is used. The values of xj =']/mj2 at the crossings may be
-estimated from the first three terms—of the Taylor expansion of xj,
then |

2

. .0 _ o : _. Y220 _
X, = xj + (v vo)dxj/dv f 0.5(v vo) d xj/du 5-28

J

From the cubic and quadratic fit only the positive roots which alsé
have positive.QIOpe dmj/dv at the crossings, will-épproximate the
lowest flutter velocity,

A simplified flow diagram for the curve fitting flutter analysis
is shown in Figure 8. Following Figﬁré 8 it is seen that an initial
value of v = A M, and some‘folerance e are assigned. The quantity.
v = vo/M is then calculated which will cause the cubic fit to have a

negative slope near the origin. The imaginary parts of the eigenvalues

30

E& are then computed at v for all n modes. VF = ]0_ and u* = 0 are
the upper and lower limits of the qutter'velocity and the v value,
respectively. 1t should be no£ed that ea;h que_of oscillation n is
‘chéeégé for a crossing of wj and a critical velocity is computed for
each crossing. The velocities which are computed from the predicted
crossings and the approximafe value of Xj (from Taylor's expansion)
are compared to find the smallést velocity, which is then set as the

new upper limit Vf. The flutter velocity Vf predicted from the

initial assumed value vo_is then compared with the velocity:

Vo= v ol | co 5-29
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if the absoluté value of (Vf - Voyvo is greater than some small
-number ¢, thgn the computations are repeated with o set equal to
the predicted crossover value of'v* which corresponds tb the

lowest crifical velocity Vf computed. 1f a positive crossing with.
positive slope dwj/dv is not predicted then u* = 0 will terminate
computations. Also if the number of flutter iterations, for which

there is no convergence, exceeds some number {e.g. 5), then computa-

~tions are terminated.

-

Examgles

The data.for equatién (4-10) were'generéted for the cantilevered
box beam (Figure 9) where the design parameters were those ifisted in
Table [11. A digital computer program was written which imblemented
the flutter velocity solution previously explained.

Case 1 will be considered as the minimum sét of parameters (P(l)}
PMIN(1)) and Case 2 as the minimum set of parameters times six
(P{1) = PMIN{(I) x ). For the minimum set of #arameters an initial
value of Vo = 1 was assumed and the program found a flutter ve1ocit§
of 715.6 feet per second ét v = 7.907 feet per radian, and for ¢
equal to 0.05.,. The computations of the flutter velocity were repeated
for values of v, = 2, 3, &4, ;.., 20. In each case the program con-
-verged to a flutter velocity between 715.6 and 716.3 feet per second.
The total time for the twenty flutter velocity calculations was

245.53 seconds or an éverage of 12.276 seconds per flutter velocity
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*

Assign T Compute | '; v, =10 <
= : -
Vo, M€ V=il V. j=lton f '
J V=0
-
Computze N
. i _ 0
‘);"j, dj_uj’ld\), d l?l VR B
‘{' o : 7 Yes
DO j=! o R | _
. r (Do Loop Y Vf v -112
Y - 1 Y%=V X
Compute real positive } for - A V=V A
€rossing oflpj for which the pre- ' :
dicted dwjid‘\}is greater than 0. “—-——*
If none exist go to continue. /T Continue

X X +dx°ld\)(v-\)>

4 0 5 d2><°/dv ARG
i

v=v X2 .

Figure 8. Simplified Flow Diagram for Curve Fitting Analysis.
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 computation. From Table | it is seen that the maximum number of
iterations to find fhe fluttér velocity is five.. For initial values
of Vo equal to 7.0 and 8.0 the algorithm converged to an.answer in
two and one iterations respectively.

The flutter velocity analyses wereArepeated for design parameters
of Case 2 in a simi]ar‘manner. The total time for £wenty flutter
calculations was 210.83 seconds, or an average of 10.54 seconds per
~flutter velocity ;nalysis. From Table Il it is seen thaf for
assumed Vg values of 3, 10, and 11 that the atgorithm converged to
the answer on the first attempt. The average time for a flutter
-veiocity anafysis iteration for Casesl’énd 2 was 3.9l_secoﬁds. A!i
‘computations were performed by an 1BM 360, Model 50 digital computer.

Figures 12-35 show‘thg actual computed wj versus v curves and
the approximation of each curve as generated from the algorithm.
The assumed values of Vg = 5.0 and Vg = 9.0 were.used.for Case | and
Case 2 respectively. These values (vo) were chosen since they lay
between the crossings of different modes. Also, individual graphs
are shown since in many cases the cubié 6rlquadratic fit would tie on
.tOp of the computed ﬁurve forkthe majority of v values given.
Tables V-VII give the numerical values of the plotted curves and
the computed airspeed V for the reader to see a numerical comparison

between the computed curve and the approximation. .



Table |. Convergence for Twenty Assumed Values of
Yo for Case L.

Assumed Predicted Predicted Predicted

Value: Rogt Velocity Mode
Yo v : Vf n
1.0 9.278 869.2 2

7.762 701.5 3
_ 7.907 715.6 2
2.0 6.097 554.2 2
7.416 | 659.0 o,
7.911 7188 .2
7.906 715.6 Y
3.0 5.641 500.7 , 2
7.089 | | 1 627.0 2
7.885 710.2 2
7.906  715.6 | 2
4.0 5.952 523.9 ' 2
7.326 649.7 2
7.911 7144 2
7.906 715.6 2
5.0 6.611 582.3 2
7.742 692.5 2
7.908 715.7 T
6.0 737 sk 2
7.916 715.1 2
7.906 , 715.6 2



Assumed " Predicted Predicted Predicted

Value Rogt Velocity Mode
v, v | Vf n
7.0 7.886 ©709.3 2

| 7.906 715.6 2
8.0 o 7.907 715.6 B 2.
9.0 ~ 9.000 1328.0 3

. 8.006 724.9 2
o 7.907 7i5.6 2
10.0 ? . 7.596 689.0 3
7915 7160 2
11.0 " 7.268 664. 5 3
7.928. 715.5 2
7.906 | 715.6 2
7.080 653.7 3
7.926 | 713.7 2

| 7.906 715.6 2

13.0 7.060 658.7 3

793 7239 2

- 7.906 715.6 2

i‘i.O . 7.168 675.4 3"

7.981 715.9 2
7.906 715.6 2
15.0 7.367 700.3 3
7.937 717.0 | 2

7.906 715.6 .2



Assumed
Value

v
o

16.0

17.0

18.0

15.0

20.0

Predicted

Root -
ok

7.628
7.917

- 4,827
6.569
7.861
7.906
5.009
*6.725
7.933
7.906
5.209
6.094
7.979
7.907
5.422
7.099
7.987
7.907

Predicted
Velocity

Vv

f

730.
716.

471,

575.
701.
715.
hgh.
589.
703,
715.
518,

605.

716.

715.
54k,

623.

719.
715,

R [ve (=] [+ - I & 3 AL}

g

Wi WU~ W

. Predicted
Mode
n

52



Assumed
Value

Y
o

1.0

2.0

3.0

4.0

5.0

Table |i. Convergence for Twenty Assumed Values of

v_ for Case 2.
o

Predicted
Rogt
v

33,17
k.39
13.63
8.99
10.15
7.28
10.34
10.16
28.96
k.28
13.74
8.91
10.15
14.63
8.04
10.19
10.16
11.94
9.95
10.16

53

Predicted Predicted

Velocity ‘ Mode
Ve n
9836.0 5
352.4 : 2
1180.0 | 2
793.7 2
370.1; 2
12633.0 | 5
892.2 g
870.1 | 2
2126.0 , 2
373.3 . | 2.
1195.0 2.
e .
870.5 2
1270.0 | 2
- 755.2 2
876.7 2
870.1 2
1049.0 2
857.3 - 2

870.1 2



Assumed
Value

6.0

7.0

8.0

9.0

10.0

12.0

13.0

14.0

16.0

Predicted
Root
\J*

10.87
10.14
10.38
10.16
10.18
10.16
10. 14
10. 16
10.12
9.93
10.16
9.47
10.15
8.75
10.14
10.16
7.89
10.17
10.16
7.12
10.28

10.16

Predicted
Velocity

f

v

948.
868.
- 899.
870.
876.
870.

870

870.

868

856.
870.
826.
869.
774.
870.
870.
708.
877.
870.
64l
892.
870.

9 .

8

2

0D -

9
]

2
1

.2

o o~

Predicted
- Mode
n

.54_



Assumed
. Value

v
o

17.0

18.0

19.0

-20.0

Predicted.A””l

Rogt

v

.57

10.

10.

L2
16

W21

- 10.

10

10

.15

54

.00
.62

10.

]5-

.90

10.

10.

65
15

v

.591-
911.
- 870.
555.
927.
869.

. 531,

938.
869.
517.
943.
869.

Predicted
Velocity

f

9
6

OO0

A . A T ¥

Predicted
Mode
‘n

55
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Conclusions

For the two examples presented hgre'the fluttér velocity

ané}ysis #rpgram always converged to an answer for values of Vo chosen
between | and 20 and did not show any tendehcy to diverge from the
solution, however, this does not guarantee that the mefhod will be
retiable for all systems. It hay be possible that some other type of
fit besides a cubic or quadratic equation would give more accurate
resu]ts; but the former was used Sgcause of simpliéity. The vaiue of
M = 10 was used for the cases presented, but for some 5ystems tﬁis
number may be either éoo large or too_sméf] and might yfé]d a negative
slope from the orjgin.'

| it should be noted that'fhe seﬁond derivatives of ¢j are not.
needed unless the cubic equation fails to give a real positive vé]ue
of v, however, the computer program compﬁted all of the Second_
=deri;atives even if they weré not needed. Some computational time
-may be saved by computing only those values of d2¢j/du2 which are.
needed. For the cases shown the cubic was used for four of the
six 65&?5.

' One problem that did not effect convergence for the cases

explained was that of "switching of the modes'' for the wj values,
The subroutine which computes the eigenvalues arranges the eigenvalues
‘i} in descending magnitude of the real part of the eigenvalue Xj'
This is done since the xj values for a particular mode vary only

slightly as can be seen from Figure 10 or 11. The imaginary part of
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the eigenvalues ¢j’ however, for a mode ﬁay change from point‘to
point by a considerable amount. The'ordering of the eigenvalues by
xj, therefore, may cause the ¢j value computed from v, not to
caorrespond with the Eﬁ value computedifrom v = v thus resulting in a
bad fft for the actual shape of that mode. From Figure 11 switching
is seen to occur for values of v = 3.0 and v = 14.0.

It is the belief of the author tﬂat the.f}utter teéhnique
‘presented here is a basically simple and efficient method for finding
the-fluttér Ve[ocfty. For the designer with a feeling for the range

of Vg values to try, this ‘method should be'quite successful.
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APPENDIX A

Box Beam and Variable Parameters
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Bay no., 1

= § ft,
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=b = 25 in.
5,46 slugs/ft°

it

10.0 x 106 psi, modulus of elasticity
h,0 x 106 pei, modulus of rigidity

TLongitudinal

Rib

= 2,5 in., distance of elastic axis from the midchord

Figure 9. Rectangular Box Beam and Properties
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“Table 111,

Case 1, P(l) = PHMIN{I).

Bay  Areas of
No. Longitudinals ] Web
(ftz) Thlc??iises
I ) 0.002315 0.0011]1
2 0.002315 0.00Ilil
: 0.0011 17

3 0.002315

~Case 2, P(I) = PMIN(I) x 6.

Bay Areas of Front and Back
No. Longitudinals Web
(ftz) Thic%?iises
1 0.01389 0.006667
2 0.01389 0.005667
3 0.01389 0.006667

Front and Back

Variable Parameters of Box Beam,

Top and

Bottom Skin

Thicknesses
(ft)

0.0005555
0.0005555
0.0005555

Top and

Bottom Skin

Thicknesses
(ft)

0.003333

0.003333
0.003333

63

Rib
Thicknesses
(ft)
0.0005555
0.000Q5555

0.0005555

Rib
Thicknesses
(fe)
0.003333
0.003333

0.003333



APPENDIX B
Plots and Corresponding Tables of Computed

Curves and Cubic or Quadratic Fit



4.00

3.20

2. 40

1.60

LOG (x%10 9

0. 80

P (1) =PMIN (1), MADES 1-6
JV—-—.”%— = Hi-“"’ ‘ ‘r____,,..—ﬂ
r—‘fA , 7 : ,
' %ﬁ - : 4 4 4 : g §——-8§
e L |

.00

2.00 .00 6.00 v 8.00  10.00 {2.00 - 1{4.00 18.00

Figure 10. Real Part of EigenQalues for Case 1.
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ft/rad

‘.-0 [=+] ~J o
L] L] -
(=]

10.0

12.0
13.0
14.0

5.0

16.0

Table 1V. Real Part of the Eigenvalues

for Case 1.
MODE._1
(x103)
1.13
1.09
1.05
1.01
0.98
0.97
0.98

1.01

MODE, 2

(x10%)

0.
0.
.78 -
.96

0

50 .

62

H
.13
.23
.22
.99
17
15
.14
b

Ak

!

b

s

MODE 3

(x10°)
0.38

0.40
0.46

0.55

0.68
0.86
1.19

1.32

1.57
1.85
2.15
2.47

282
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O W ® N oW
o

1.0
12.0
13.0
14.0

15.0
16.0

for Case 1.

MODE &
(x109)

0.76.

o 0.86

0.97

T 1.17

1.47
1.86
2.35
2.92
3.58
4,34
5.19
6. 14
7.18
8.32

9.57
10.90

MODE &
(x102)

0.
0.
0.

-0

]

Table [V. Real Part of the Eigenvalues

62
70

85

.98
.04
.07
.08
.09
.09
.10
.10
10
a1
o
1

.12

MODE 6
(x10)

2.96
3.35

.3.50
3.44
3.31

- 3.19
3.07

2.96
2.86
2,79
2.72
2.66
2.61
2.57
2,53
2,50

67
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Figure 11. Real Part of the Eigenvalues for Case 2.
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Vv
ft/rad

1.0

2.0

Table V.

Real Part of the Eigenvalues

for Case 2.

MODE 1
(x10%)

8.91
8.85
8.76
8.66
18.55
8.45
34
.25
7
n
.09
.10
.16
.26
¥y

oo Qo o0 00 o0 e oo 0o o o

.59

MODE, 2
(xlOb)

0.

0

0.

39

Ql‘]

46

.52
61
.72

.85
.00
A7
.34
.50
.66
.81
.9k
.06
18

\u N ot a3 w

MODE 3
{x107)

3.07
3.04
3.01
2.98
2,94

2.92

.2.90

2.93

w

.02
17
-37
.63
.92
.26
.64
.06

69



ft[rad

i

2.

3.

o]
*

W o~

10.
It.
12,
13.
___“[4.
15.
©16.

v

0

0

0

Tabie V.

Real Part of the Eigenvalues
for Case 2.

MODE _k
(x10°)

o.
- 0.53
0.
0.
0.

0.

1

}

1.32
1.
1.
1.
1.
1.

1.

1

49

53
67

77

91

.06 .

.20

4
49

56

61
66
72

.77

MODE _5
(x10°)

0}
0.
0.
7' c.
0.
0.
0.
0.

0.

58
58
57

56

57
61
67
76

86 .

0.98

1.

1

1.
.
1.

2,

12

.28

46
67
87

10

MODE66
{x10")

2q36

2451

2.77

3.16
3.59
l3.88
.06
4.19
4. 28
4,39
b.47
454
k.60
4.65
4.69
4.72
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Table VI. Computed ¢, and Quadratic Fit for
' Case | and v, = 5.0.

COMPUTED  QUADRATIC COMPUTED

ft/rad CURVE v_ = 5.0 AIRSPEED
' (x103) (2103) ft/sec
0.0 0.0 +0.09 0.0
1.0 ' -0.15 -0.09 29.7
2.0 ) -0.32 -0.29 60.6
3.0 T ~0.5] 050 92.6
4.0 ~0.73 -0.73 126.0
5.0 ©~0.97  -0.97 160.0-
6.0 IS P X -1.23 192,00
7.0 -1.50 | -1.50 - 223.0
8.0 -1.78 a9 . 252.0
9.0 -2.07 -2.10 278.0
10.0 -~2.36 22 ©300.0
no -2.66 -2.75 319.0
12.0 -2.96 | -3.10 334.0
5.0 - -3.27 -3.47 346.0
14.0 -3.58 -3.85 357.0
15.0 -3.90 b, 25 365.0

16.0 -4,22 ~4.66 371.0
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Table VIl. Computed Y, and Quadratic Fit Values
for Case 2 and'vO = 9.0,

v COMPUTED  QUADRATIC COMPUTED
ft/rad CURVE v_=19.0 AIRSPEED

* (xwh) (:]04) ft/sec
0.0 0.0 -0.13 0.0
1.0 -0.25 -0.34 33.5
2.0 . -0.51 057 67.2
3.0 - -0.82 -0.85 101.0
4.0 -1.15 ~1.17 136.0
5.0 . o152 -1.53 . 171.0
6.0 ‘ -1.92 -1.92 206.0
7.0 -2.36 -2.36 242.0
8.0 -2.83 -2.83 279.0
9.0 -3.34 -3.34 315.0
0.0 -3.89 -3.89 . 351.0
1.0 -4.47 -l kg 387.0
12.0 -5.09 -5.11 422.0

13.0 -5.72 -5.77 455.0

14.0 ~6.37 -6.48 k870
15.0 ~7.03 ~7.22 517.0

16.0 -7.69 -8.01 546.0
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Figure 16. v, versus v for Case 1.
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Table VIil, Computed y, and Cubic Fit Values

ft/rad

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

for Case 1 and v, = 5.0.

COMPUTED
CURVE

(x10”
.0
-0.13
-0.23

-0.29

-0.28

-0.21
-0.13
~0.06
+0.01
0.08
0.15
0.23
1 0.29
0.35
0.4t
0.46

0.51

QUADRATIC
v, = 5.0

(xloh)

¢.0

-0.2!
%0.26
-0.26

-0.21

+0.08
0.33
0.65
1.06

1.57.
2.16
2.87
3.68
L.61

COMPUTED
AIRSPEED
ft/sec

0
L
. 255
339
hojt
475
- 550
© 631
724
906‘
925
1030
wJ.‘Z,O._
1220
1310
1400

1500

79
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Table 1X. Computed ¢, and Cubic Fit Values
' for Case 27 and Vo T 9.0. -

v COMPUTED ~ CUBIC FIT COMPUTED
ft/rad CURVE v _=85.0 AIRSPEED
. (x105) (x10°) Fe/sec
0.0 0.0 0.0 : 0
1.0 oz -0.25 161
2.0 X ~0.50 -0.54 311
300 -0.77 -0.84 bl
5.0 -1.03 -1.11 554 -
5.0 - -1.25 : o -1.33 RN
6.0 -1.39 1.4k 708
7.0 -1.38 -1.4 | 759
8.0 -1.20 -1.20 800
9.0 -0.78 -0.78 832
10.0 -0.13 -0.12 864
11.0 o +0.76 +0.83 - 898
12.0 1.83 2.11 931
“=13.0 - 3.03 3.7h 966
14.0 4,28 5.78 1010
15.0 . 5.54 8.24 1050

16.0 6.77 112 1080
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Figure 20. w3 versus. v for Case 1.
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Figure 21. Quadratic Approximation of ¢3 for Case 1.
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and Quadratic Fit Values
and vo = §.0.

Table X. Computed ¥
for Case 1

3

v COMPUTED - QUADRATIC COMPUTED

#t/rad CURVE v_ = 5.0 AIRSPEED
: (X‘D#} ' ,"‘?xloh) ft/sec
0.0 00 +0.08 0
1.0 -0.05 -0.002 o 161
2.0 ~0.11 -0.09 327
3.0 -0.18 -0.18 491
40 - -0.27 -0.27 634
50  -0.36 " -0.3 o
6.0 -0k . o5 811
7.0 -0.54 -0.54 849
8.0 -0.65 -0.63 863
9.0 ©  -0.92 -0.72 825
10.0 -0.96 . -0.82 870
1.0 T S 878
12.0 -1.34 -1.00 882
- 13.0 ol 15T TS VA [ 887
4.0 o -Lys TR 891
15.0 -1.98 -1.29 893

16.0 -2.21 -1.39 896
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Figure 23. Quadratjc Approximation of w3 for Case 2.
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Table XI. Computed ¥, and Quadratic Fit Values.

3

for Case 27and Vo T 9.0,
v COMPUTED " QUADRATIC COMPUTED
ft/rad CURVE v_ =90 AIRSPEED
: , (x105), (2]05) .ft/sec
0.0 0.0 1.04 0
1.0 ~0.08 0.78 180
2.0 - -0.18 0.50 l 363
3.0 - -0.28 0.23 Sh7
5.0 ~0.40 -0.05 733
5.0 ©-0.55  -0.3% 922
6.0 -0.73 -0.63 o
7.0 - -0.95 -0.91 | 1300
8.0 B 03 | -1.21 1480
9.0 -1.50 -1.50 1640
10.0 ~ -1.80 o -1.81. 1780
11.0 -2.10 =2.01 1890
12.0 ~2.39 2.2 1990
3.0 -2.66 -2.73 2080
14.0 ~2.93 -3.04 2140
15.0 -3.19 -3.36 2200

16.0 ~3. 44 . -3.69 2250
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Tabte Xil. Computed Y, and Cubic Fit Values
for Case 1 and v, T 5.0.

v COMPUTED CUBIC FIT COMPUTED

ft/rad CURVE v =5.0 AIRSPEED
(xm"j) ?wa) | ft/s_ec .
0.0 0.0 0.0 | 0.
1.0 -0.14 =0t 362
2.0 - ~0.34% -0.33 690
3.0 ;“ ” -0.55 - -0.56 964
4.0 | ~0.83 -0.84 1170
5.0 -1.15 C-Las 1300
6.0 -1.50 -1.50 1390
7.0 -1.87 -1.88 1440
8.0 -2,28 -2.29 1480
9.0 -2.70 -2.72 | 1500
10.0 -3.16 -3.18 ' 1520
.o -3.63 . ~3.66 1530
_12.0 41 -4.15 1530
13.0 | -4,61 ~4,65 1530
14,0 | -5.12 -5.17 1530
15.0 -5.63 -5.68 1530

16.0 -6.16 - =6.21 1530
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 Table XI11,

v
ft/rad

0.0°
1.0
2.0
3.0 I
4.0
5.0

Computed ¥, and Cubic Fit Values

for Case 2 and vo = 9.0,

COMPUTED
CURVE

(x10%)
0.0
-0.30
-0.59
-0.99
-}.34

-1.52

-1.50
| ~1.16
-0.48
+0.41
1.31
2.12
2.83
3.43
3.95
4.39
4.76

' CUBICsFéT
v, = .
_?xlos)

0.0
<018
-0.43
-0.68
~0.90
-1.02
-1.01
-0.80
-0.34
+0. 41
1.5
3.02
5.97
7.4k
10.45
14.08

18.37

COMPUTED
AIRSPEED
ft/sec

0
450
872
1230
1559
1800
1990
2150
2310
2480
2660
2850
3040
3240
3440
3620
3800

94
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Table XIV. Computed ¥_ and Cubic Fit Values

___for Case I’and v = 5.0.

v COMPUTED cuBic FIT COMPUTED

ft/rad CURVE v = 5.0 AIRSPEED

(x]06) ?XIOG) ft/sec
0.6 0.0 0.0 0
1.0 -1.37 1 400
2.0 -2.29 -2.01 755
3.0 -2,81 -2.19 ) 1030
T AL -1.93 1280
5.0 . -3 -1.31 ; 1550
6.0 . -0.63 -0.41 1830
7.0 -0.12 ' +0.70 2130
8.0 +0.25 .92 2420
9.0 0.53 3.18 2730
10.0 0.72 h.50 3020
11.0 | 0.86 . 5.50 3320
12,00 0.9 6.40 3620
13.0 - 1.03 7.02 3900
14,0 ' - 1.08 7.28 4200
5.0 1.1 7.09 4500

16.0 1.13 6.38 4780
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100

Table XV. Computed ¢5 and Cubic Fit Values -
for Case 27and v, = 9.0.

v | COMPUTED CuBiC FIT ‘COMPUTED
ft/rad CURVE v, = 9.0 AURSPEED
(xIDG) (x106) ft/sec
0.0 0.0 0.0 =0
1.0 -0.18 -0.31 h14
2.0 -0.41 -0.66 830
3.0 -0.60 -1.06 1260
5.0 -0.93 -1.52 1680
5.0 -1.55 ©=2.02 2090
6.0 -2.32 | . -2.58 a3
7.0 - -3.08 -3.18 2700
8.0 o -3.8 -3.83 2910
9.0 ~4, 54 '-h.sh 3070
10.0 -5.27 -5.28 3200
11.0 -6.01 -6.08 3290
..12.0 -6.78 -6.93 3350
13.0 -7.59 -7.82 3400
14.0 -8.43 -8.75 3430
15.0 -9.32 -9.74 3470

16.0 -10.30 ~16.76 3490
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Table XVI.

v
ft/rad

- 0.0

1.0

3.0

5.0
6.0
7.0
8.0
9.0

10.0

11.0

. 12,0

13.0
14,0
5.0

ls.o'

Computed ¥

and Cubic Fit Values

for Case 1 and vo = 5.0.

COMPUTED
CURVE

(xIOG)
0.0
-0.63
-0.88
-0.79
-0.70
~0.64
~0.60
-0.57
~0.54
~0.51
-0.49
-0. 46
-0, 44
-0.42
-0.40
-0.38
-0.36

CUBIC FIT
v = 5.0
8]

(x10%)
0.0
-0.58
- -0.81
- -0.83 |
- -0.73
-0.64
-q,68
-0.95
-1.59
-2.69
-4.38
-6.78"
-10.00
-14.20
-19.40
-25.70
-33.40

COMPUTED

AIRSPEED

ft/sec

581
1090

© 1600
2160
2750
3360
4000 .
1650
5310
5930
6670
7360
8050
8730
9430

10100
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Table XVI!. Computed {, and Cubic Fit Values
for Case 2 and v, = 9.0.

v COMPUTED © CUBIC FIT COMPUTED
ft/rad CURVE v_=9.0 AIRSPEED
‘ (x167) (§]07) ft/sec
0.0 0.0 0.0 -0
1.0 -1.43 =139 o 651
2.0 ~2.84 | -2.01 ' 1260
3.0 - -4,05 -1.99 ' 1800
ho | -4.48 -1.49 2250
S.o \ -3.14 40.éh- 2640
6.0 | -0.70 | +0. 42 3050
7.0 +1.25 1.54 3470
8.0 : 2.56 2.59 3910
9.0 3.2 3.h2 4350 |
10.0 3.95 3.90 4770
11.0 L, 26 3.88 5200
12.0 L. ho 3.22 5630
13.0 b by 1.78 6060
14.0 b5 -0.58 O 6lgo
15.0 L.33 . -4, 00 6930
16.0 - 4. 22 -8.62 7360
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ABSTRACT

The established method for solution of the critical flutter
velocity of the equation of motion forran aircraft structure requires
a plot of ¥ versus v where § is the imaginary part of the eigenvalue
of the f]utter equation and v is the velocity divided by the
circular frequency of oscillation or the dependent vériable of the
flutter equation. = From this plot the crossover points, where § is
zero, are sought from which the lowest or critical velocity, for
which the structure will have divergent_oscillations, may be computed.
A curve fitting approach {which is raﬁid, simﬁle, and direct in
comparison to established methods) has been developed'to solve the
flutter equation for the critfca] flutter velocity. .

The ¥ versus v curves are approximated by cubic and quadrafic
- equations. The curve fitting technique utilized the‘First and .
second derivatives of ¢ with respect to v which are derived in the
text,

The method was tested for two structures, one structure being
Six ti%és the total mass of the ofher structure. The algorithm
never showed any tendency fé diverge from the solution. The average
time for the computation of a flutter velocity was 3.91 seconds on an
I18M Model 50 computer for an accuracy of five per cent. For values of
v close to the critical root of the flutter equation the algorithm
converged on the first attempt. The‘maximum number of iterations for
convergence to the critical flutter velocity was five with an assumed

value of v relatively distant from the actual crossover.



